Abstract
Hydrogenated microcrystalline silicon (µc-Si:H) films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100 °C using a mixture of argon (Ar) and hydrogen (H2) gasses as precursor gas. The effects of the ratio of hydrogen flow (H2/(Ar+H2)%)) on the microstructure were evaluated. Results show that the microstructure, bonding structure, and surface morphology of the µc-Si:H films can be tailored based on the ratio of hydrogen flow. An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%. The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40% to 70%. The surface roughness of thin films increased, and total hydrogen content decreased as the ratio of hydrogen flow increased. All µc-Si:H films have a preferred (111) orientation, independent of the ratio of hydrogen flow. And the µc-Si:H films had a dense structure, which shows their excellent resistance to post-oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.