Abstract
Effects of two small G-proteins, Rap1 and Ras, on the sodium channel activity in NG108-15 cells were studied using sindbis virus-mediated gene transfer. When an activated Rap1A mutant (Rap1-12V, the activated mutant of Rap1 carrying glycine to valine substitution at codon 12) or a dominant-negative H-Ras mutant (Ras-17N, carrying serine to asparagine substitution at codon 17) was expressed in differentiated NG108-15 cells, the proportion of cells generating action potential decreased and the amplitudes of sodium current diminished. This effect was sensitive to an inhibitor of protein kinase A. The effects of a cyclic AMP (cAMP) analog (dibutyl cAMP) on sodium current in these cells were biphasic: inhibitory at lower concentrations (<100 μM) and enhancing at higher concentrations (200–500 μM). The inhibitory phase of cAMP effect was suppressed by an activated Ras mutant (Ras-12V) while the enhancing phase was suppressed by Rap1-12V. These data are consistent with the model that Rap1 and Ras function as counteracting regulators of voltage-gated sodium current through cAMP-dependent mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.