Abstract
Machine tool spindle bearings used as supporting rotator parts play a very important role in machining industry. Keeping a good surface integrity is crucial to the long-time and high-efficiency work of the bearings. To find out the crucial factors for bearing failure, surface integrity evolutions on machine tool spindle bearings made from a normal bearing steel and a newly developed rare-earth-addition bearing steel were compared after benchtop tests in this work. Furthermore, surface integrity evolutions on bearings were analyzed under field service with more complex service conditions. The results show that the surface integrity changes under both benchtop testing and filed service, while the surface damages and changes in surface integrity on the inner rings are more significant than those on the outer rings. Meanwhile, the surface damage modes are mainly scratches and impressions on the benchtop bearings, while surface rolling contact fatigue predominates the damages on the field bearings. Furthermore, the addition of rare earth elements in bearing steels transfers the crack initiation mode from inclusion initiated to martensite initiated under service, possibly resulting in a higher stability of accuracy and longer life for bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.