Abstract
Weight-classified athletes need an energy intake plan to accomplish target weight reduction. They have to consider body composition and energy metabolism during rapid weight loss followed by rapid weight regain to achieve their energy intake plan. We investigated the effects of rapid weight loss, followed by weight regain, on body composition and energy expenditure. Ten weight-classified athletes were instructed to reduce their body weight by 5% in 7 days. Following the weight loss, they were asked to try to regain all of their lost weight with an ad libitum diet for 12 h. Food intake was recorded during the baseline, weight loss, and regain periods. Fat mass, total body water, and fat-free dry solids were estimated by underwater weighing and stable isotope dilution methods. A three-component model was calculated using Siri's equation. Basal and sleeping metabolic rates were measured by indirect calorimetry. Body composition and energy expenditure were measured before and after weight loss and after weight regain. Body weight, total body water, and fat-free dry solids were decreased after the weight loss period but recovered after weight regain (p < 0.05). Basal metabolic rate did not change throughout the study. Sleeping metabolic rate decreased significantly during weight loss but recovered after weight regain. Changes in total body water greatly affect body weight during rapid weight loss and regain. In addition, rapid weight loss and regain did not greatly affect the basal metabolic rate in weight-classified athletes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.