Abstract
The aim of this study was to evaluate the effects of rapid cooling prior to freezing on frozen-thawed canine sperm quality. In experiment 1, centrifuged ejaculates from 6 dogs were pooled, split into 4 aliquots and cryopreserved by the Uppsala procedure using different cooling rates (control, cooling speed 18 C/90 min and average cooling rate 0.2 C/min; rapid, cooling speed 18 C/8 min and average cooling rate 2.25 C/min) in combination with 2 glycerol addition protocols (fractionated or unfractionated). In experiment 2, centrifuged ejaculates from 4 dogs were processed individually using the same cooling rates described in experiment 1 in combination with an unfractionated glycerol addition protocol. Each of the experiments was replicated 5 times. Sperm quality was evaluated after 30 and 150 min of post-thawing incubation at 38 C. Total motility (TM), progressive motility (PM) and quality of movement parameters were assessed using a computerized system, and sperm viability (spermatozoa with intact plasma and acrosome membranes) was assessed using flow cytometry (H-42/PI/FITC-PNA). Values for TM, PM, viable spermatozoa and the quality of movement parameters after thawing were not significantly affected by the cooling rate. The interaction between the cooling rate and the added glycerol protocol was not significant. There were significant differences among the males (P<0.01) in the sperm quality parameters evaluated after thawing. The interaction between the males and the cooling rate was not significant. In conclusion, canine spermatozoa can be cryopreserved using the Uppsala method at an average cooling rate of 2.25 C/min prior to freezing together with addition of fractionated or unfractionated glycerol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.