Abstract

Ranolazine, a piperazine derivative, is currently approved for the treatment of chronic angina. However, its ionic mechanisms in other types of cells remain unclear, although it is thought to be a selective blocker of late Na(+) current. This study was conducted to evaluate the possible effects of ranolazine on Na(+) current (I(Na)), L-type Ca(2+) current (I(Ca,L)), inwardly rectifying K(+) current (I(K(IR))), delayed-rectifier K(+) current (I(K(DR))), and Ca(2+)-activated K(+) current (I(K(Ca))) in pituitary tumor (GH(3)) cells. Ranolazine depressed the transient and late components of I(Na) with different potencies. This drug exerted an inhibitory effect on I(K(IR)) with an IC(50) value of 0.92 microM, while it slightly inhibited I(K(DR)) and I(K(Ca)). It shifted the steady-state activation curve of I(K(IR)) to more positive potentials with no change in the gating charge of the channel. Ranolazine (30 microM) also reduced the activity of large-conductance Ca(2+)-activated K(+) channels in HEK293T cells expressing alpha-hSlo. Under current-clamp conditions, low concentrations (e.g., 1 microM) of ranolazine increased the firing of action potentials, while at high concentrations (>or=10 microM), it diminished the firing discharge. The exposure to ranolazine also suppressed I(Na) and I(K(IR)) effectively in NG108-15 neuronal cells. Our study provides evidence that ranolazine could block multiple ion currents such as I(Na) and I(K(IR)) and suggests that these actions may contribute to some of the functional activities of neurons and endocrine or neuroendocrine cells in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.