Abstract

This paper investigates the effects of random variations of soil properties on site amplification of seismic waves. First, based on attenuation laws and the filtered Tajimi–Kanai spectrum, seismic motion at the base rock of a soil site is stochastically generated according to an assumed earthquake with a given magnitude and epicentral distance. Motions on the surface of this layered random soil site are calculated by nonlinear wave propagation methods, and by assuming the incoming seismic wave consisting of SH wave or combined P and SV waves. Soil properties, including shear modulus, damping ratio and mass density, as well as ground water level are considered as random in the numerical calculation. The Rosenblueth method is used to solve the random dynamic responses of the soil site. Parametric calculations are performed to investigate the effects of various parameters on site amplification of seismic waves. The mean and maximum ground motions on surface of the site are estimated. Numerical results indicate that the estimated surface motions differ substantially if the random variations of soil properties and soil saturation level are taken into consideration in the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.