Abstract

Selective laser melting (SLM) is a promising additive manufacturing technique arising from glassy metal characteristics of treated medium. When creating novel compositions of materials and intricate workpieces, reliable thermal designs should be implemented based on well-understood heat transfer characteristics on matierlas to be used. Herein, we investigate local and overall heat transfer characteristics of SLM processes and investigate the principal parameters related to the magnituge of a radiative heating power and its exposure time. We present how to exert their influence upon local melting and sequential solidification of copper powder bed. The local solid media reach a quasi-equilibrium state in even 1 ms with the incident powers of 50, 100, and 200 W. The anisotropic expansion of the molten pool is governed by a thermally-induced Marangoni flow. As the power is increased, the Marangoni factor increases linearly up to 853.7%. Consequential heat transfer characteristics tell us that unconditional input power should be avoided to prohibit the detrimental effect; the radiative heating power should be confined for thermalization of a target domain and for that preventing the evaporation of a material. These approaches from material science to heat transfer can be used to develop a platform for SLM processes guaranteeing its feasibility and applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.