Abstract

Hydrofluorocarbons (HFC), which are mildly flammable and pose potential fire risks, have received greater attention as a viable low global warming potential alternative to traditional refrigerant and fire-suppressant compounds. Therefore, there is a demand to accurately quantify their flammability and reactivity to establish proper safety metrics. This study investigates the effects of radiation heat loss on slowly-propagating HFC/air laminar flames. Planar 1-D simulations of R-32/air and R-1234yf/air flames show significant reductions in laminar flame speed due to radiative heat losses from the flame zone. Simulations of spherically expanding flames (SEF) revealed that the radiation-induced flow needs to be considered when interpreting data from experiments. To this end, a Spherical-flame RADiation-Induced Flow (SRADIF) model was developed to estimate the burned gas inward flow velocities in constant-pressure SEFs, utilizing the optically thin limit assumption to model radiation heat loss. The model was validated against results from detailed numerical simulations of SEFs, from which radiation-induced inward flow was derived using a new formulation considering both the radiation heat loss and convective flow effects. Results show that SRADIF accurately predicts the inward flow velocity for R-32/air mixtures over a range of conditions and performs significantly better compared to existing analytical models. However, the model was unable to accurately predict flow velocities for R-1234yf/air flames and the reason for this is discussed. (224 words)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.