Abstract

We have measured the electrical resistivity of NbSe 3 samples which have been radiation damaged with 2.5 MeV protons up to a defect concentration of 0.5%. We find that, unlike substitutional impurities, the defects do not destroy the charge density wave (CDW) transitions and the samples do not go superconducting. The defects become more effective scatterers below the CDW transitions so that the defect resistivity is temperature dependent. The defects pin the CDWs randomly so that carriers in the unnested regions can be scattered by the CDW. This leads to an enhancement of the defect resistivity. The resistivity of the highly damaged samples is still increasing with decreasing temperatures to below 1 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call