Abstract

AbstractAero-engine compressor designers have a challenging task of developing compressors that have a higher-pressure ratio and better efficiency with a lower number of stages. Such designs would require blades with high diffusion factor and hence the inherent risk of flow separation. Tandem blade is an interesting concept, which possibly addresses this problem. In tandem blading, the forward blade and the aft blades are arranged in such a manner that a converging nozzle flow path is created between the two blades. The flow accelerates through this nozzle, energizes the suction surface flow, and thereby prevents the early onset of flow separation. This paper presents the steady computational analysis of a tandem rotor stage and baseline stage in low-speed axial flow compressor at design and off-design condition using ANSYS CFX. The study is further extended to analyze the effect of radial distortion on the performance of tandem rotor and the single rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.