Abstract

This study investigates the radial aerodynamic forces that may develop inside the centrifugal compressor and the turbine volutes due to pressure variation of the circulating gas. The forces are numerically predicted for magnitudes, directions, and locations. The radial aerodynamic forces are numerically simulated as static forces in the turbocharger finite element model with floating ring bearings and solved for nonlinear time-transient response. The numerical predictions of the radial aerodynamic forces are computed with correlation to earlier experimental results of the same turbocharger. The outcomes of the investigation demonstrate a significant influence of the radial aerodynamic loads on the turbocharger dynamic stability and the bearing reaction forces. The numerical predictions are also compared with experimental results for validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.