Abstract
Temporal differentiation refers to animals' ability to regulate their behaviour during an ongoing interval. Striatal dopaminergic mechanisms are purported to be involved in temporal differentiation, and recent evidence also implicates 5-hydroxytryptaminergic (5-HTergic) mechanisms, possibly mediated by 5-HT(2A) receptors. There is evidence that 5-HT(3) receptors contribute to the regulation of dopamine release in the basal ganglia; however, it is not known whether 5-HT(3) receptor stimulation can influence temporal differentiation. We examined the effects of a selective 5-HT(3) receptor agonist m-CPBG, a mixed 5-HT(2A/3) receptor agonist quipazine, and selective 5-HT(3) and 5-HT(2A) receptor antagonists (MDL-72222 and ketanserin, respectively) on temporal differentiation in a free-operant psychophysical procedure. Twenty-four rats were trained to respond on two levers (A and B) under a free-operant psychophysical schedule, in which sucrose reinforcement (0.6 M: , 50 microl) was provided intermittently for responding on A during the first half and on B during the second half of 50-s trials. Logistic psychometric functions were fitted to the relative response rate data [percent responding on B (%B) vs time from trial onset (t)], and quantitative indices of timing performance [T (50) (value of t corresponding to %B=50), Weber fraction, and mean time of switching from A to B, S (50)] were derived. Quipazine (0.5, 1, and 2 mg kg(-1)) altered timing performance, dose-dependently reducing T (50) and S (50); m-CPBG (2.5, 5, and 10 mg kg(-1)) had no significant effect. The effect of quipazine was antagonized by ketanserin (2 mg kg(-1)), but not by MDL-72222 (1 mg kg(-1)). The present results provide no evidence for the involvement of 5-HT(3) receptors in temporal differentiation and indicate that the effect of quipazine on performance was mediated by 5-HT(2A) receptor stimulation. The results are consistent with previous evidence for the involvement of 5-HT(2A) receptors in interval timing behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.