Abstract

The objective of this study was to comprehensively evaluate quillaja (QSP) and yucca saponin (YSP) products with respect to their effects on diversity of rumen bacteria and archaea, abundance of selected microbes, and feed degradability and fermentation. Both QSP and YSP at doses 0-0.6 g l(-1) tended to increase degradability of feed substrate in in vitro rumen cultures, but to different extents. Neither one of the saponins affected the concentrations of ammonia, total volatile fatty acids, or molar proportion of acetate. However, QSP increased molar proportion of propionate and decreased that of butyrate, whereas YSP tended to decrease that of butyrate. As determined by qPCR, QSP and YSP did not affect the abundance of total bacteria or Ruminococcus albus. The QSP did not affect the abundances of Fibrobacter succinogenes or genus Prevotella, but tended to decrease that of Ruminococcus flavefaciens, whereas YSP significantly increased the abundance of R. flavefaciens and Prevotella, and numerically increased that of F. succinogenes. Both saponins increased archaeal abundance, although to small magnitudes (0.3-0.4 log). The protozoal populations were decreased significantly by QSP, but not by YSP. Based on DGGE and T-RFLP analysis, both saponins altered the bacterial community and species organization, but less so the archaeal community. This study demonstrated that saponins, although not effective in mitigating methane emission, may improve feed utilization at low doses, and modulate ruminal microbial communities in a dose-dependent manner. The results of this study suggest that saponins at low doses may directly stimulate the growth of some rumen bacteria including cellulolytic bacteria, thus improving digestibility of feeds, independent of their defaunation activity. In contrast, saponins at high doses modulate rumen fermentation characteristically similar to defaunation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.