Abstract

Quenching from high temperatures has been identified as a useful means to enhance the piezoelectric properties and thermal stability of bismuth-based perovskite ferroelectrics. In the present work, it is demonstrated that quenching leads to improvement of depolarization temperature, ferroelectric and piezoelectric properties in Na0.5Bi0.5TiO3-NaNbO3 (NBT-0.1NN) ceramics. In-situ synchrotron x-ray diffraction measurements indicated an irreversible transformation from cubic to coexisting cubic and rhombohedral phases during the application of a high electric field, for both as-sintered and quenched ceramics. These results confirm the non-ergodic relaxor ferroelectric nature of the materials. DC poling induced a transformation to single-phase rhombohedral structure in both cases, with highly textured domain configurations. These well-oriented ferroelectric domain states were relatively stable under subsequent bipolar electric field cycling. For the pre-poled NBT-0.1NN ceramics, the quenched samples were found to exhibit the highest intrinsic (lattice strain) and extrinsic (domain switching) contributions to electrostrain, due to the increased rhombohedral distortion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.