Abstract
Arginine-rich cell-penetrating peptides, including octaarginine (R8) and HIV-1 TAT peptides, have the ability to translocate through cell membranes and transport exogenous bioactive molecules into cells. Hydrophobic counteranions such as pyrenebutyrate (PyB) have been reported to markedly promote the membrane translocation of these peptides. In this study, using model membranes having liquid-ordered (Lo) and liquid-disordered (Ld) phases, we explored the effects of PyB on the promotion of R8 translocation. Confocal microscopic observations of giant unilamellar vesicles (GUVs) showed that PyB significantly accelerated the accumulation of R8 on membranes containing negatively charged lipids, leading to the internalization of R8 without collapse of the GUV structures. PyB displayed an alternative activity, increasing the fluidity of the negatively charged membranes, which diminished the distinct Lo/Ld phase separation on GUVs. This was supported by the decrease in fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Additionally, PyB induced membrane curvature, which has been suggested as a possible mechanism of membrane translocation for R8. Taken together, our results indicate that PyB may have multiple effects that promote R8 translocation through cell membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.