Abstract

The undesirable effects of silver nanoparticles (AgNPs) on soil environment have caused much concern. The previous studies, however, focused on sandy soil, with little known on others. In present study, the effects of polyvinylpyrrolidone-coated AgNPs (0, 1, 10, and 100mgkg- 1 soil) on enzyme activities (urease and dehydrogenase), ammonia-oxidizing bacteria (AOB) and archaea (AOA), bacterial and archaeal communities, and microbial function profile in a yellow-brown loam soil were investigated. The significant dose-response inhibitions of AgNPs on enzyme activities were observed, with dehydrogenase more susceptible to AgNPs. Both of bacterial and archaeal amoA genes were reduced by AgNPs above 10mgkg- 1, with AOB more susceptible to AgNPs than AOA. AgNPs at 100mgkg- 1 caused reductions on the dominant Nitrosospira and Nitrosomonas, and even disappearance on Nitrosovibrio, while increase on Nitrososphaera significantly. AgNPs also changed bacterial and archaeal community structure. Exposure to AgNPs at 100mgkg- 1 caused significant increases by 186.79% and 44.89% for Bacteroidetes and Proteobacteria, while decreases by 47.82%, 44.09%, 43.67%, and 80.44% for Actinobacteria, Chloroflexi, Planctomycetes, and Verrucomicrobia, respectively. Moreover, three dominant archaeal phyla (Thaumarchaeota, Euryarchaeota, and Parvarchaeota) were also reduced in the presence of AgNPs, especially Thaumarchaeota with the significant reduction of 13.71%. PICRUSt prediction revealed that AgNPs indeed had the potential to change soil microbial community's functional contributions. It must be cautious on the interference of AgNPs to soil ecological functions in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call