Abstract
A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath. Taking the typical parameters of plasma sheath at the height of 71 km as an example, the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field, as well as the effect of self-electric field on the distribution of plasma density, are studied. The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath. Meanwhile, the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System (GPS) signal. Besides, the location of density reduction area provides a reference for the appropriate location of antenna. The time evolution of plasma density shows that the effective density reduction time can reach 62% of the pulse duration, and the maximum reduction of plasma density can reach 55%. Based on the simulation results, the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed. Furthermore, the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field. However, the quasi neutral assumption of plasma in the flow field is not appropriate, because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density, which cannot be ignored. The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.