Abstract

Abstract Potato starch–water suspensions (8.0%, w/w) were subjected to pulsed electric fields (PEF) treatment at 30 kV·cm − 1 , 40 kV·cm − 1 and 50 kV·cm − 1 , respectively. The physicochemical properties of PEF-treated potato starch samples were investigated using scanning electron microscopy (SEM), laser scattering technique, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and the Brabender rheological method, with native potato starch as reference. It has been concluded from SEM analysis that dissociation and damage of PEF-treated potato starch granules appeared. Some granules aggregated with each other and showed gel-like structures. It was revealed from particle size analysis that there was an obvious increase of the granule size after PEF treatment. This has been attributed to the aggregation among granules. It was also demonstrated from other analysis that relative crystallinity, gelatinization temperatures, gelatinization enthalpy, peak viscosity as well as breakdown viscosity of modified samples all decreased with increasing electric field strength. Industrial relevance In this study, the effect of PEF treatment (up to 50 kV·cm − 1 ) on physicochemical properties of potato starch has been investigated. The results from SEM images showed that dissociation, denaturation and damage of potato starch granules had been induced by the PEF treatments. Some of granule fragments showed gel-like structures, and congregated with each other or with other starch granules. Laser scattering measurements of particle size revealed that an obvious increase of granule size under electric field strength of 50 kV·cm − 1 , which was attributed to the aggregation of the starch granules. The X-ray diffraction pattern showed an obvious loss of crystalline structure after the PEF treatment at 50 kV·cm − 1 , which induced a trend of transformation from crystal to non-crystal in potato starch granules. DSC analysis showed a decrease in gelatinization temperatures ( T o and T p ) and gelatinization enthalpy (Δ H gel ) with increasing electric field strength. Brabender rheological method has been used to show that the peak viscosity and breakdown viscosity decrease with increasing electric field strength of PEF treatment. All the results reveal that the PEF treatment can lead to an intragranular molecular rearrangement of potato starch granules, which induces changes of various physicochemical properties of the treated starch thus may endow it some new characteristics and functions. This phenomena may warrant further more detailed study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.