Abstract
Ni–Co/ZrO2 nanocomposite coatings were fabricated in a modified Watt’s bath by using high frequency pulse electrodeposition and the effects of pulse parameters such as frequency and duty cycle on the microstructure and properties were investigated. The surface morphology, phase structure, and microhardness of the Ni–Co/ZrO2 nanocomposite coatings were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction and Vickers’ microhardness tester. The corrosion behaviour of the nanocomposites was evaluated by electrochemical impedance spectroscopy in the 3.5 wt% NaCl solution. The results revealed that increasing frequency and duty cycle resulted in a change of morphology from rough and porous structure to compact and homogeneous structure and reduced the ratio of relative intensity I(200)/I(111) of the Ni–Co/ZrO2 nanocomposites by intervening the adsorption–desorption of interfacial inhibitors at the cathode/solution interface. Furthermore, the effects of frequency and duty cycle on the microhardness of Ni–Co/ZrO2 nanocomposites should be associated with the ZrO2 nanoparticles according to dispersion strengthening from Orowan mechanism. It has been found that the corrosion resistance of the nanocomposites in 3.5 wt% NaCl solution depended on the incorporation of ZrO2 nanoparticles and the phase structure of Ni–Co/ZrO2 nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.