Abstract
The purpose of this study was to determine the effect of pulse frequencies of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells in vitro. Various photo-biostimulatory effects of LLLT, including bone formation, were affected by some irradiation factors such as total energy dose, irradiation phase, laser spectrum, and power density. However, the effects of pulse frequencies used during laser irradiation on bone formation have not been elucidated. Osteoblast-like cells isolated from fetal rat calvariae were irradiated once with a low-energy Ga-Al-As laser (830 nm, 500 mW, 0.48-3.84 J/cm2) in four different irradiation modes: continuous irradiation (CI), and 1-, 2-, and 8-Hz pulsed irradiation (PI-1, PI-2, PI-8). We then investigated the effects on cellular proliferation, bone nodule formation, alkaline phosphatase (ALP) activity, and ALP gene expression. Laser irradiation in all four groups significantly stimulated cellular proliferation, bone nodule formation, ALP activity, and ALP gene expression, as compared with the non-irradiation group. Notably, PI-1 and -2 irradiation markedly stimulated these factors, when compared with the CI and PI-8 groups, and PI-2 irradiation was the best approach for bone nodule formation in the present experimental conditions. Since low-frequency pulsed laser irradiation significantly stimulates bone formation in vitro, it is most likely that the pulse frequency of LLLT an important factor affecting biological responses in bone formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.