Abstract

Oral stimulation with high-tastant concentrations that are alternared with low-tastant concentrations or water rinses (pulsatile stimulation) results in taste intensity ratings that are higher than continuous stimulation with the same average tastant concentration. This study tested the combined effects of taste pulsation rate and viscosity on pulsation-induced taste enhancement in apple juice. According to a tastant-kinetics hypothesis, less pulsation-induced taste enhancement is expected at enhanced pulsation rates in the high-viscous proximal stimulus compared to lower viscous stimuli. High-concentration sucrose apple juice pulses and low-concentration sucrose apple juice intervals were alternated at different pulsation periods (pulse + interval in seconds) every 2.5 s (period length = 5 s) or every 1.25 s (period length = 2.5 s). Pulsed stimuli were presented at two viscosity levels by the addition of pectin (0 and 10 g/L). Sweetness intensities of pulsed stimuli were compared to a continuous reference of the same net but nonalternating sucrose concentration. Sweetness ratings were higher for pulsatile stimuli than for continuous stimuli. In low-viscous stimuli, enhancement depended on the pulsation period and peaked at 5 s periods. In high-viscous stimuli, the same enhancement was observed for both pulsation periods. These results contradict a tastant-kinetics hypothesis of viscosity-induced taste suppression because impaired tastant kinetics by viscosity would predict the opposite: lower pulsation-induced taste enhancement for viscous stimuli, especially at higher pulsation rates. Instead, these observations favor an explanation based on perceptual texture-taste interactions, which predict the observed independence between viscosity and pulsation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.