Abstract

Fluid bed agglomeration is commonly used to improve the instant properties and flowability of cohesive food powders. However, fluidization of cohesive particles is characterized by cracks and channeling, but air pulsation systems can be attached to the fluid bed in order to improve bed homogeneity. The aim of this study was to investigate the influence of air pulsation frequencies, at (0, 5, 10 and 15) Hz, in fluid bed agglomeration of cassava starch and cornstarch particles. The particles size increased with agglomeration, resulting in the decreasing of wetting time and higher flowability. The solving of Population Balance Equations achieved the experimental aggregation kernel constants. The pulsation of (5 and 10) Hz resulted in the higher agglomeration rates, for both cassava and cornstarch study, respectively. The evaluation of the experimental PBE kernel constants were useful to measure the aggregation rate and to compare the performance of a fluid bed granulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.