Abstract

The spatial heterogeneity of pulmonary blood flow can be described by the relative dispersion (RD) of weight-flow histograms (RD = SD/mean). Glenny and Robertson (J. Appl. Physiol. 69: 532-545, 1990) showed that RD of flow in the lung is fractal in nature, characterized by the fractal dimension (D) and RD for the smallest realizable volume element (RDref). We studied the effects of increasing total pulmonary blood flow on D and RDref. In eight in situ perfused sheep lung preparations, 15-microns radio-labeled microspheres were injected into the pulmonary artery at five different blood flows ranging, in random order, from 1.5 to 5.0 l/m. The lungs were in zone 2 at the lower flows and in zone 3 at the higher flows. The lungs were removed, dried, cut into 2 x 2 x 2-cm3 pieces, weighed, and then counted for microsphere radioactivity. Fractal plots of log(weight) vs. log(RD) were constructed by iteratively combining neighboring pieces and then calculating RD with the increasingly larger portion size. D, which is one minus the slope of the fit through this plot, was 1.14 +/- 0.09 and did not change as blood flow increased. However, RDref decreased significantly (P < 0.01) as total flow increased. We conclude that the fractal nature of pulmonary blood flow distribution is not altered by changes in overall flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.