Abstract

Microbial remediation is a promising technique to reduce Cd accumulation in rice (Oryza sativa). In present study, a set of pot experiments were conducted to evaluate the effects of Cd-tolerate Pseudomonas TCd-1 inoculation on rice Cd uptake, soil enzyme activities and Cd bioavailability in the rhizosphere soils under Cd contaminated conditions. The results showed that at the ripening stage, with the inoculation of TCd-1, Cd contents in root, culm, leaf, hull and brown rice significantly reduced by 60.7%, 47.7%, 50.6%, 58.1% and 47.9%, respectively, and the cadmium bioconcentration factor (BCF) of rice lowered by 66.2% under 5 mg kg−1 Cd treatment. At the meantime, in the rhizosphere soils, pH increased by 0.05, the contents of exchangeable Cd (EX-Cd) and Fe-Mn oxides (OX-Cd) increased by 107.8% and 33.5%, whereas organic matter (OM-Cd) and residual (Res-Cd) decreased by 31.9% and 60.0%, respectively. The activity of acid phosphatase (ACP) increased by 28.3%, catalase (CAT), saccharase (SUC) activity decreased by 28.5% and 26.0%. Similarly, the Cd contents in root, culm, leaf, hull and brown rice reduced by 42.1%, 42.5%, 58.0%, 50.3%, and 68.8%, respectively, and the BCF lowered by 57.1%, under 10 mg kg−1 Cd treatment. Simultaneously, the soil pH increased by 0.06, the activities of CAT, SUC, urease (URE), ACP decreased by 26.4%, 34.6%, 63.8% and 15.3%, respectively. Furthermore, the correlation analysis showed that the inoculation of TCd-1 changed the correlation between rice Cd content and the biomass of roots, leaves, soil pH, CAT, PPO, URE activities, OM-Cd in rhizosphere soils. It suggested that Pseudomonas TCd-1 effectively reduced Cd uptake and Cd accumulation in rice was closely linked to the changes of soil pH, enzyme activities and Cd availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call