Abstract

Parallel imaging using phased array coils facilitates accelerated magnetic resonance imaging (MRI) and spectroscopy (MRS). Parallel data reconstruction requires the combination of data from individual coil elements, but limited combination algorithms currently exist for higher-order phased arrays and MRS data. Here, we present a systematic framework for identifying coil proximity-related signal inhomogeneities and noise levels in phased array coils that may affect sensitivity of parallel MRS. Single-voxel MRS was acquired in nine voxel positions in a brain spectroscopy phantom on a 3T whole-body MR scanner using commercially available 64-, 32-, and 20-channel phased array coils. Spectra produced by individual coil elements were combined using both a signal-to-noise ratio (SNR) threshold and based on the position of individual coil elements. SNR and metabolite Cramer-Rao lower bounds (CRLBs) from the final combined spectra were used as metrics to compare combination strategies and the effects of the phased array geometry and individual coil proximity. Comparisons were performed using one-way repeated measures ANOVA and post-hoc Tukey's range test (p<0.05). The 32-channel phased array coil produced the highest overall SNR compared to the 64-channel (p=0.0009) or 20-channel coils (p=0.003). Low SNR spectra from individual coil elements in the 64-channel coil can reduce the overall SNR when simply combining spectra from all elements. SNR varied significantly as a function of voxel position (F=58.3, p<0.0001) and SNR threshold for all phased arrays (p<0.05 for 64-, 32-, and 20-channel coils). Metabolite CRLBs were dependent on the combination strategy. We demonstrate the importance of the sampling voxel position and coil proximity on overall SNR in parallel MRS data acquisition, with significant SNR improvements after selectively filtering individual spectra based on pre-determined SNR thresholds which must be optimized for each phased array coil element and volume of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.