Abstract

InP-based high electron mobility transistors (HEMTs) will be affected by protons from different directions in space radiation applications. The proton irradiation effects on InAlAs/InGaAs hetero-junction structures of InP-based HEMTs are studied at incident angles ranging from 0 to 89.9° by SRIM software. With the increase of proton incident angle, the change trend of induced vacancy defects in the InAlAs/InGaAs hetero-junction region is consistent with the vacancy energy loss trend of incident protons. Namely, they both have shown an initial increase, followed by a decrease after incident angle has reached 30°. Besides, the average range and ultimate stopping positions of incident protons shift gradually from buffer layer to hetero-junction region, and then go up to gate metal. Finally, the electrical characteristics of InP-based HEMTs are investigated after proton irradiation at different incident angles by Sentaurus-TCAD. The induced vacancy defects are considered self-consistently through solving Poisson’s and current continuity equations. Consequently, the extrinsic transconductance, pinch-off voltage and channel current demonstrate the most serious degradation at the incident angle of 30°, which can be accounted for the most severe carrier sheet density reduction under this condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call