Abstract
Rates of formation of a non-heme iron(IV)-oxo complex, [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), via electron-transfer oxidation of [Fe(III)(OH)(N4Py)](2+) in acetonitrile (MeCN) containing H2O (0.56 M) were accelerated as much as 390-fold by addition of proton acceptors such as CF3COO(-), TsO(-) (p-MeC6H4SO3(-)), NsO(-) (o-NO2C6H4SO3(-)), DNsO(-) (2,4-(NO2)2C6H3SO3(-)), and TfO(-) (CF3SO3(-)). The acceleration effect of proton acceptors increases with increasing basicity of the proton acceptors. The one-electron oxidation potential of [Fe(III)(OH)(N4Py)](2+) was shifted from 1.24 to 0.96 V vs SCE in the presence of TsO(-) (10 mM). The electron-transfer oxidation of Fe(III)-OH complex was coupled with the deprotonation process by proton acceptors in which deuterium kinetic isotope effects were observed when H2O was replaced by D2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.