Abstract

Monodisperse magnetic nanoparticles (MNPs) were synthesized by thermal decomposition of iron-oleate and functionalized with silanes bearing various functional groups such as amino group (NH2), short-chain poly(ethylene glycol) (PEG), and carboxylic group (COOH). Then, silanes-functionalized magnetic nanoparticles (silanes-MNPs) were incubated in cell culture medium plus fetal calf serum to investigate the effects of proteins from culture medium on surface property of MNPs. Zeta potential measurements showed that although surface charges of silanes-MNPs were different, they exhibited negative charges at neutral pH and approximate isoelectric points after they were incubated in cell culture medium. The reason was that silanes-MNPs could easily adsorb proteins from culture medium via non-covalent binding, resulting in the formation of protein-silanes-MNPs conjugates. Moreover, silanes-MNPs with various functional groups had different adsorption capacity to proteins, as confirmed by Coomassie blue fast staining method. The in vitro cell experiments showed that protein-silanes-MNPs had higher cellular uptake by cancer cells than silanes-MNPs.

Highlights

  • Magnetic nanoparticles have been identified as potential candidates for biological applications including magnetic separation [1], magnetic resonance image (MRI) [2,3,4], magnetic hyperthermia [5, 6], and so on

  • We reported that fetal calf serum in RPMI-1640 cell culture medium played a great role in the stability of 2, 3-dimercaptosuccinnic acid (DMSA)-coated magnetic nanoparticles (MNPs) under biological conditions, as well as their surface property and intracellular uptake [16], which is attributed to the adsorption of fetal calf serum onto the surface of MNPs

  • The further in vitro experiment results proposed that the adsorbed proteins affected the interactions between silanes-MNPs and cancer cells, suggesting that the effects of proteins from culture medium on surface property of MNPs should be taken into account in relatively biological investigations

Read more

Summary

Introduction

Magnetic nanoparticles have been identified as potential candidates for biological applications including magnetic separation [1], magnetic resonance image (MRI) [2,3,4], magnetic hyperthermia [5, 6], and so on. Despite the distinct surface properties, all of these silanes-MNPs exhibited negative surface charges at neutral pH and approximate isoelectric point (IEP) when incubating in cell culture medium (RPMI-1640 plus 10% fetal calf serum (FCS)).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.