Abstract

Excised shoot tips from 10-day-old etiolated pea (Pisum sativum L. cv. Alaska) seedlings were incubated in solutions of chloramphenicol, cycloheximide, and lincomycin at different concentrations during periods of 0, 4, 8, and 12 hours of irradiation with high intensity white light. Enzyme extracts were prepared from the whole shoot tips and compared with extracts from nontreated shoot tips for their capacity to synthesize ent-kaurene from mevalonate. In control samples, kaurene synthesis increased during the first 8 hours of irradiation and decreased after 12 hours. Chlorophyll content increased steadily up to 12 hours of irradiation. Chloramphenicol and cycloheximide reduced both kaurene synthesis and chlorophyll formation to a similar extent during all periods of irradiation, the reduction being greatest after 8 hours of irradiation. Lincomycin, a specific inhibitor of the formation of chloroplast ribosomes in detached pea shoot tips, did not significantly affect kaurene synthesis activity but strongly inhibited chlorophyll formation. It is tentatively concluded that the increase in kaurene synthesis activity during normal photomorphogenesis in pea seedlings is due to photoinduction of de novo synthesis of one or more proteins involved in the biosynthetic pathway from mevalonate to kaurene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.