Abstract

Although most studies show that prostaglandin E2 (PGE2) is the most potent and effective of the prostanoids in bone, recent data in cell culture suggest that PGF2 alpha may have unique effects, particularly on cell replication. The present study was undertaken to compare the effects of PGF2 alpha and PGE2 in cultured neonatal mouse parietal bones by simultaneous measurement of bone resorption as release of previously incorporated 45Ca, bone formation as incorporation of [3H]proline into collagenase-digestible (CDP) and noncollagen protein, and DNA synthesis as incorporation of [3H]thymidine. PGF2 alpha was less effective than PGE2 as a stimulator of bone resorption, and its effects were partially inhibited by indomethacin and markedly inhibited by glucocorticoids. In contrast, the resorptive response to PGE2 was unaffected by indomethacin and only partially inhibited by cortisol. PGF2 alpha had little effect on bone formation, in contrast to the biphasic effect of PGE2, which inhibited labeling of CDP in the absence of cortisol and stimulated CDP labeling in the presence of cortisol. PGF2 alpha increased thymidine incorporation into DNA, but the effect was smaller than that of PGE2 and was inhibited by indomethacin. These observations suggested that PGF2 alpha might act in part by stimulating PGE2 production. By RIA, PGE2 concentrations were increased in the medium of bones treated with PGF2 alpha, and this increase was blocked by indomethacin. By HPLC, bones prelabeled with [3H]arachidonic acid showed an increase in labeled PGE2 release, and RIA showed an increase in PGE2 after PGF2 alpha treatment. These results indicate that PGF2 alpha is a relatively weak agonist in bone compared to PGE2 and that some of the effects of PGF2 alpha on bone resorption, formation, and cell replication may be mediated by an increase in endogenous PGE2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.