Abstract

Support needles of Dual Hot Wire (DHW) anemometers induce significant inaccuracies for flow angle and turbulence measurements in the case of X-array probes with prongs perpendicular to the flow plane. At certain angular ranges of the incident flow, a wake interference is established between the sensors which leads to a practical limitation of the device. In the case of turbomachinery environments, this is even more critical due to the inherent unsteadiness of the flow direction rotor downstream.In the present work, the measurement deviation caused by hot-wire probes operated under interference effects has been studied and evaluated, in both steady and unsteady conditions, especially for turbomachinery flows. New designs of DHW probes without prong-wire interference effects in their operative angular ranges were developed for validation. In particular, both V-type and Z-type interference-free probes are compared to a classic X-type probe susceptible for prong-wire interferences. Firstly, a steady calibration is performed to show the baseline deviation of the X-array probe in the measurement of the velocity magnitude, the flow angle and the turbulence intensity. Typical errors up to 10–13% in velocity, 5.5–7deg in angle and 1.5–2.5 points overestimation in turbulence levels are observed. Also, unacceptable inaccuracies are found in the turbulence spectra of the measurements.Following, the impact of the interference for unsteady flow measurements is highlighted comparing the performance of the three probes within the single stage of a low-speed axial fan. The unsteady measurements of the X-array probe have revealed similar averaged discrepancies to those observed in the steady performance, but the instantaneous deviations can be as high as a 20% in velocity and 16–18deg in flow angle in those regions (rotor wakes) with large unsteady velocity gradients and turbulence generation. Turbulence intensity measured in the rotor wakes is also excessively higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call