Abstract
A low abuse liability is reported for tramadol, an analgesic drug centrally acting through either opioid or nonopioid mechanisms. In this paper, we evaluated the effects of the repeated administration (7 d) of different doses of tramadol (10, 20, and 80 mg/kg, intraperitoneally) on the opioid precursor prodynorphin biosynthesis, in comparison with morphine (10 mg/kg, intraperitoneally), in the rat central nervous system (CNS). Northern analysis showed that morphine and tramadol produced different effects. While morphine caused a downregulation of prodynorphin mRNA levels in all investigated areas (hypothalamus, hippocampus, and striatum), tramadol did not cause any significant change in the striatum, and did not decrease prodynorphin biosynthesis in the hypothalamus and in the hippocampus, at nontoxic doses (10 and 20 mg/kg). The highest dose of tramadol (80 mg/kg) decreased prodynorphin mRNA levels in the hypothalamus and the hippocampus but not in the striatum. These data give some information on tramadol effects at molecular level in the CNS. They indicate that the alterations of prodynorphin gene expression caused by tramadol and morphine show a different pattern that may be related to the different abuse potential of the two analgesic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.