Abstract

Technetium is a significant radioactive contaminant from nuclear fuel cycle operations. It is highly mobile in its oxic form (as Tc(VII)O4-) but is scavenged to sediments in its reduced forms (predominantly Tc(IV)). Here we examine the behavior of Tc at low concentrations and as microbial anoxia develops in sediment microcosms. A cascade of stable-element terminal-electron-accepting processes developed in microcosms due to indigenous microbial activity. TcO4- removal from solution occurred during active microbial Fe(III) reduction, which generated Fe(II) in the sediments and was complete before sulfate reduction began. Microbial community analysis revealed a similar and complex microbial population at all three sample sites. At the intermediate salinity site, PauII, a broad range of NO3-, Mn(IV), Fe(III), and SO4(2-) reducers were present in sediments including microbes with the potential to reduce Fe(III) to Fe(II), although no differences in the microbial population were discerned as anoxia developed. When sterilized sediments were incubated with pure cultures of NO3(-)-, Fe(III)-, and sulfate-reducing bacteria, TcO4- removal occurred during active Fe(III) reduction. X-ray absorption spectroscopy confirmed that TcO4- removal was due to reduction to hydrous Tc(IV)O2 in Fe(III)- and sulfate-reducing estuarine sediments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.