Abstract

Thirty ovariectomized sows were used in an experiment designed to determine whether the ability of the porcine uterus to release prostaglandin (PG) F(2alpha) in response to oxytocin is regulated by progesterone (P(4)) and estradiol (E(2)). Sows were assigned to one of four treatment groups: 1) no steroids (ovariectomized controls; n = 8), 2) E(2) (n = 8), 3) P(4) (n = 7), or 4) E(2) + P(4) (n = 7). P(4) and E(2) were administered so as to mimic the normal temporal changes that occur in these hormones during the estrous cycle. A group of intact sows (n = 9) was included for comparison. All sows received an injection of oxytocin (30 IU, i.v.) on Days 12, 15, and 18 postestrus. Jugular venous blood samples were collected from 60 min before through 120 min after injection of oxytocin for quantification of 13,14-dihydro-15-keto-PGF(2alpha) (PGFM). Preinjection baseline concentrations of PGFM, the magnitude of the PGFM response above baseline, and area under the PGFM response curve (AUC) were calculated for each sow on each day and compared among treatment groups by ANOVA. Among the ovariectomized sows receiving steroid replacement, baseline concentrations of PGFM were low on Day 12 postestrus in all four groups. On Days 15 and 18, baseline concentrations remained low in the two groups that did not receive P(4) but increased in those that did. Both the magnitude of the response to oxytocin and AUC were small on Day 12 postestrus in all 4 groups. By Day 15, the magnitude of the response and AUC increased in the group that received both P(4) and E(2) but remained low in the other three groups. By Day 18, responses to oxytocin were greater in both groups that received P(4) than in those that did not. Baseline concentrations were similar in intact sows and in those that received both P(4) and E(2) on all three days examined. The magnitude of the response and the AUC were greater in the ovariectomized sows receiving P(4) and E(2) replacement than in the intact control sows on Days 15 and 18 postestrus. From these results, we conclude that P(4) and E(2) interact to control the time when the uterus begins to secrete PGF(2alpha) in response to oxytocin and the amount of PGF(2alpha) secreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.