Abstract

The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call