Abstract

Al-Ti alloys, which have Al3Ti platelet particles in Al matrix, were deformed by ECAP with routes A and Bc. With increasing the number of ECAP passes, Al3Ti platelet particles are fragmented and their sizes decrease. The microstructure of ECAPed Al-Ti alloy specimens by route A has a strong alignment of the fragmented Al3Ti particles. On the other hand, ECAPed Al-Ti alloy specimens by route Bc have a relatively homogeneous distribution of Al3Ti particles comparing with the specimen deformed by route A. Based on these results, it was found that ECAPed Al-Ti alloy specimen by route A has highly anisotropic microstructure. However, both ECAPed specimens with routes A and Bc have no anisotropic wear property. That is because the wear property of the Al-Ti alloy specimen depends on the shape of the Al3Ti particle. From these results, it was found that SPD induced by ECAP is an effective processing method to make homogeneous wear property for the metallic material containing platelet solid-particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.