Abstract

ABSTRACTSystematic experiments have been carried out to characterize the yttria containing zirconia thin films on sapphire substrates by 248nm KrF excimer laser ablation. The deposition rate as a function of laser fluence and O2 pressure at room temperature was measured with a quartz crystal microbalance. The results show different threshold fluences for deposition in vacuum vs. oxygen. While the deposition rate increases with increasing fluence at a given oxygen pressure, the rate eventually saturates at a higher laser fluence. At a given fluence, the oxygen pressure dependence of the deposition rate shows a radical reduction when the O2 pressure increases from 10 mTorr to 1 Torr. Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy were used to obtain stoichiometric information. A very strong pressure dependence of the O/Zr ratio was observed. While the trend of increasing O/Zr and Zr/Y ratio with increasing O2 pressure is apparent, the correlations between O/Zr as well as Zr/Y ratio and other processing conditions are less obvious. RBS results indicate an increasing roughness at the interface between the ZrO2 film and the sapphire substrate as the oxygen pressure exceeds 50 mTorr. The structural information obtained from x-ray diffraction patterns indicates broadening of peak width with increasing laser fluence as well as decreasing substrate temperature. For the film deposited at a lower substrate temperature, a strong (002) texture was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.