Abstract
Polyimide is used extensively in a variety of integrated circuit packaging applications. It is a good dielectric material with excellent planarizing capabilities, but like most polymers, it absorbs moisture. This hygroscopic behavior can lead to reliability problems in integrated circuit packages. The effects of variations in process history on moisture uptake are examined using gravimetric measurement techniques. In particular, the effects of cure schedule and exposure to high temperature/high humidity environments (85 °C/85% RH) on steady state moisture uptake are reported. Steady state moisture uptake is shown to be a decreasing function of cure temperature. Samples cured at 250 °C absorb 25% more moisture by weight than do samples cured at 400 °C. Moreover, the steady state moisture uptake in polyimide is greater after the samples have been “aged” in a high temperature and humidity ambient. The bulk and surface chemical composition are also monitored as a function of aging using Fourier transform infrared spectroscopy (FTIR) and electron spectroscopy for chemical analysis (ESCA), respectively. The PI surface chemistry degrades after 700 h in an 85 °C/85% RH environment. The bulk chemical composition appears to be unaffected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.