Abstract

Salmonella spp. are pathogenic bacteria that cause diarrhea, abortion, and death in yak and severely harm livestock breeding. Therefore, it is vital to identify a probiotic that effectively antagonizes Salmonella. To the best of our knowledge, few prior studies have investigated the efficacy of Enterococcus faecium against Salmonella. Here, we evaluated the enteroprotective mechanism of E. faecium in a mouse Salmonella infection model using hematoxylin-eosin (H&E) staining, quantitative real-time polymerase chain reaction (Q-PCR) technology, microbial diversity sequencing, and metabonomics. Enterococcus faecium inhibited the proinflammatory cytokines IL-1β, IL-6, TNF-α, and IFN-γ and promoted the anti-inflammatory cytokine IL-10. The Firmicutes/Bacteroidota (F/B) ratio and the abundances of Firmicutes and Akkermansia were significantly higher in the E. faecium than in the Salmonella group. Metabonomics and microbial diversity sequencing disclosed five different metabolites with variable importance in the projection (VIP) > 3 that were characteristic of both the Salmonella and E. faecium groups. Combined omics revealed that Lactobacillus and Bacteroides were negatively and positively correlated, respectively, with cholic acid, while Desulfovibrio was positively correlated with lipids in both the control and Salmonella groups. Desulfovibrio was also positively correlated with lipids in both the Salmonella and E. faecium groups. Enterococcus faecium antagonizes Salmonella by normalizing the abundance of the intestinal microorganisms and modulating their metabolic pathways. Hence, it may efficaciously protect the host intestine against Salmonella infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call