Abstract
A realistic assessment of the whole life cost of rail track foundations requires analysis of the effects of the repeated loadings applied by trains. This paper reports the effects of principal stress rotation (PSR) during cyclic loading on the permanent deformations measured in a series of hollow cylinder tests. The tests were carried out on a number of reconstituted soils selected in order to simulate foundation materials on an existing heavy haul railway line. Typical loadings and track geometry together with dynamic finite-element analyses were used to define representative stress changes to be applied to these soils, which were then tested with and without principal stress rotation during loading. It is shown that principal stress rotation has a significant and deleterious impact on permanent deformation of some materials. Therefore, it is concluded that cyclic triaxial testing, which cannot impose principal stress rotation, will not necessarily give good estimates of the long-term performance of rail track foundations. As PSR cannot be ignored when evaluating permanent displacements of rail track foundations, the use of more appropriate (realistic) testing methods such as the cyclic hollow cylinder or the cyclic simple shear apparatus is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.