Abstract

Cellulose nanocrystals (CNCs) have drawn tremendous attention because of their extraordinary physical and chemical properties as well as renewability and sustainability. In this work, after a range of pretreatments, such as freeze-drying, ball-milling, mercerization, N-methylmorpholine-N-oxide dissolution and ionic liquid dissolution, various CNCs with different crystalline properties and morphologies were obtained by hydrolysis or oxidation. XRD and AFM were used to determine the influences of pretreatments on the crystalline properties and morphologies of CNCs. New methods, i.e., specific pretreatments followed by sulfuric acid hydrolysis or 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation, were developed to obtain sphere-like CNCs. It was found that sphere-like CNCs were more likely to be obtained from cellulose materials possessing high accessibility. Pretreatments produced cellulose with various crystallinities and polymorphs, and therefore changed the yields of CNCs and influenced their morphology. CNCs prepared by TEMPO oxidation generally had smaller size than the corresponding products obtained by sulfuric acid hydrolysis. In addition, for the dissolved/regenerated cellulose, TEMPO oxidation was a better method to yield sphere-like CNCs than sulfuric acid hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.