Abstract

Crack-tip-opening displacement (CTOD) and fatigue-crack growth tests were conducted for several line pipe steels with uniaxial tensile or compressive prestrain, εpr. Critical CTOD decreased with increasing |εpr|. The reduction of critical CTOD due to prestrain was dependent on the ductile-brittle transition temperature of the steels without prestrain. A few percent of εpr induced the ductile-brittle transition for the steels with a higher transition temperature. The compressive εpr had larger effects on both reduction of critical CTOD and strain induced ductile-brittle transition than the tensile εpr. Only the high compressive εpr accelerated both fatigue crack initiation and growth, and no obvious effect of the tensile εpr on the fatigue properties was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.