Abstract

Among ElectroActive Polymers (EAPs) the dielectric elastomer actuator is regarded as one of the most practically applicable in the near future. So far, its effect on the actuation phenomena has not been discussed sufficiently, although its strong dependency on prestrain is a significant drawback as an actuator. Recent observations clarifies that prestrain has the following pros and cons: prestrain plays an important role in generating large strain, whereas it rather contributes to the reduction of the strain. Prestrain provides the advantages of improving the response speed, increase of the breakdown voltage, and removing the boundary constraint caused by the inactive actuation area of the actuator. On the contrary, the elastic forces by prestrain makes the deformation smaller and the induced stress relaxation is severely detrimental as an actuator. Also, the permittivity decreases as prestrain goes up, which adds an adverse effect because the strain is proportional to the permittivity. In the present work, a comprehensive study on the effects of prestrain is performed. The key parameters affecting the overall performances are extracted and it is experimentally validated how they work on the actuation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.