Abstract

Many patients who are on mechanical ventilation are on ventilator modes called pressure support ventilation (PSV) and continuous positive airway pressure (CPAP) particularly when they are being weaned. As the diaphragm is responsible for approximately 75% of breathing, it is important to promote diaphragm shortening to optimize weaning from mechanical ventilation. The purpose of our 1998 quasi-experimental study was to explore the effects of PSV and CPVP on diaphragm shortening. An animal model was utilized using four Sprague-Dawley rats from the same litter purchased from Sasco (Kansas City, USA). Also measured in this study were intrathoracic pressure (DeltaITP), positive inspiratory pressure, respiratory rate, tidal volume, end-tidal carbon dioxide, central venous pressure (CVP) and mean arterial pressure (MAP). Pressure support was increased in increments of 5 cm H2O at CPAP levels of 0, 2 and 4 cm H2O. A direct assessment of diaphragm shortening was achieved through the adherence of a miniaturized ultrasonic sensor to the inferior surface of the middle costal surface of the right hemidiaphragm of four Sprague-Dawley rats. Limitations of this study included a small sample size, anaesthetized rats and abdominal dissection for insertion of the ultrasonic sensor. As PSV was increased, there was a decrease in MAP, CVP, respiratory rate and end-tidal CO2. When increasing levels of CPAP were added to PSV, a decrease in diaphragm shortening was observed. These results support that higher levels CPAP may hinder diaphragmatic function thus prolong mechanical ventilation. The purpose of this pilot study was to explore the effects of PSV and CPAP on diaphragm shortening. Also measured were DeltaITP, positive inspiratory pressure, respiratory rate, tidal volume, end-tidal carbon dioxide, CVP and MAP. Pressure support was increased in increments of 5 cm H2O at CPAP levels of 0, 2 and 4 cm H2O. A direct assessment of diaphragm shortening was achieved through the adherence of a miniaturized ultrasonic sensor to the inferior surface of the middle costal surface of the right hemidiaphragm of four Sprague-Dawley rats. Limitations of this study included a small sample size, anaesthetized rats and abdominal dissection for insertion of the ultrasonic sensor. As PSV was increased, there was a decrease in MAP, CVP, respiratory rate and end-tidal CO2. When increasing levels of CPAP were added to PSV, a decrease in diaphragm shortening was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.