Abstract
The effects of pressure, temperature, shear, and their interactions on selected quality attributes and stability of milk during ultra-shear technology (UST) were investigated. The UST experiments include pressure (400 MPa) treatment of the milk sample preconditioned at 2 different initial temperatures (25°C and 15°C) and subsequently depressurizing it via a shear valve at 2 flow rates (low: 0.15-0.36 g/s; high: 1.11-1.22 g/s). Raw milk, high-pressure processed (HPP; 400 MPa, ~40°C for 0 and 3 min) and thermal treated (72°C for 15 s) milk samples served as the controls. The effect of different process parameters on milk quality attributes were evaluated using particle size, zeta potential, viscosity, pH, creaming, lipase activity, and protein profile. The HPP treatment did not cause apparent particle size reduction but increased the sample viscosity up to 3.08 mPa·s compared with 2.68 mPa·s for raw milk. Moreover, it produced varied effects on creaming and lipase activity depending on hold time. Thermal treatment induced slight reduction in particle size and creaming as compared with raw milk. The UST treatment at 35°C reduced the effective diameter of sample particles from 3,511.76 nm (raw milk) to 291.45 nm. This treatment also showed minimum relative lipase activity (29.93%) and kept milk stable by preventing creaming. The differential effects of pressure, shear, temperature, and their interactions were evident, which would be useful information for equipment developers and food processors interested in developing improved food processes for dairy beverages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Dairy Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.