Abstract

Micropipette aspiration is a potentially useful and accurate technique to measure red blood cell (RBC) geometry. Individual RBCs are partially aspirated and from the resulting sphere diameter, total cell length, and pipette diameter, membrane area and cell volume can be calculated. In this study we have focused on possible shape artifacts associated with the aspirated portion of RBC. We observed that the apparent RBC geometry (calculated area and volume) changed markedly (P < 0.001) with the applied aspiration pressure; for normal human RBC the area increased by 5.6 +/- 0.6% and volume decreased by 4.7 +/- 0.6% when the aspiration pressure was increased from 20 to 100 mm water. The calculated membrane area dilation modulus was 7.4 dyn/ cm, which is far below the expected value, and microscopic observations revealed a membrane folding artifact as a possible artifact. These assumptions were strengthened by using a short-duration (3 s) pressure peak of 20-100-20 mm water. The folding then disappeared permanently, but a small (0.31 +/- 0.09%; P < 0.001) area decrease was detected which yields a realistic dilation modulus of 215 dyn/cm. We conclude that membrane folding can critically affect RBC micropipette measurements and that a transient pressure peak can unfold the RBC membrane, thus allowing accurate measurements of RBC geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.