Abstract

Spherically propagating laminar flames at elevated pressures in a large volume bomb were studied for propane-air mixtures. The effects of the initial mixture pressure on the burning velocity and flame instabilities were investigated varying the initial pressure from 0.10 to 0.50MPa. The Markstein number decreased with the increase in the initial pressure. The burning velocities at elevated pressures are affected not only by the change in the unstretched burning velocity but also by the variation in the Markstein number, or the variation in the sensitivity of the burning velocity to the flame stretch. The flame with a low Markstein number was unstable. Cellular flame structure developed earlier in such cases. Cellular structure accelerated the flame propagation. The burning velocity was affected by the flame instabilities in addition to the above two factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.