Abstract
BackgroundPeripheral skin blood flow (SBF) changes during and after spinal mobilization (SM), evaluated with laser Doppler flowmetry, may document physiological responses associated with SM. ObjectivesTo document variations in SBF during and after application of an SM and evaluate influence of pressure on SBF by applying the same standardized SM with 3 different nonnoxious pressures. DesignCross-over design with 4 interventions on 4 different days: control (no touch) and 3 SMs applied rhythmically at 5%, 40%, or 80% of pain pressure threshold (sham SM, low-pressure SM, or high-pressure SM, respectively). MethodThirty-two individuals participated. The inspiratory gasp (IG) test was our positive control of vasoconstriction through excitation of the skin sympathetic nervous activity (SSNA). Each session comprised 5 phases: (1) baseline at the end of a 20-min acclimatization, (2) IG test, (3) post-IG phase, (4) SM phase or no manual contact for control, and (5) post-SM phase. A Biopac MP36 system collected SBF data, and a Novel Pliance-X system recorded pressure data. Results/findingsEqual and significant bilateral vasodilation occurred during application of unilateral sham SM, low-pressure SM, and high-pressure SM. Post-SM significant vasodilation persisted after high-pressure SM. ConclusionsThe current study is the first to describe bilateral peripheral SBF changes occurring during and 5 min after application of standardized SMs. Our post-SM vasodilation suggests involvement of mechanisms other than the putative SSNA-excitatory mechanism proposed with skin conductance measurements. Persistence of post-SM vasodilation following only high-pressure SM suggests possible pressure-dependent mechanisms. However, further research is warranted to clarify our findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.