Abstract

Abstract The influence of temperatur and pressure on the fluorescence quantum yield of N-methylacridone (9,10-dihydro-9-oxo-10-methyl-acridine) in toluene in the range of 283-313 K and 1 bar to 2.5 kbar, respectively, has been investigated. Treatment of the data in terms of the Eyring transition-state theory leads to a consistent interpretation of the observed effect. The unusually large increase of the quantum yield with increasing pressure is attributed to a positive volume of activation, ⊿V≠, for the thermally activated S1-T2 intersystem crossing which is known to be the only deactivation process (of the Si-state) competing with fluorescence. Comparison of the values for ⊿H≠, the activation enthalpy of this process, determined at various pressures, indicates a decrease in ⊿H≠ at elevated pressures. Since ⊿H≠ can be associated with the S1-T2 energy gap involved in intersystem crossing, this result further confirms the conclusion that the change in Franck-Condon factors alone cannot account for the decrease in the intersystem crossing rate with increasing pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.